1. Prolongation formula for general vector fields

Prolongation formula. Let $x \in\left(x^{1}, \ldots, x^{p}\right)$ and $u=\left(u^{1}, \ldots, u^{q}\right)$ and a vector field $V=\xi^{i} \frac{\partial}{\partial x^{i}}+\phi_{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}} .{ }^{1}$ Then we have the following prolongation formula.

Theorem 1.1. For the vector field above,

$$
\mathrm{pr}^{(n)} V=V+\sum_{\alpha=1}^{q} \sum_{|J| \leq n} \phi_{\alpha}^{J}\left(x, u^{(n)}\right) \frac{\partial}{\partial u_{J}^{\alpha}}
$$

where

$$
\begin{equation*}
\phi_{\alpha}^{J}=D_{J}\left(\phi_{\alpha}-\xi^{i} \cdot u_{i}^{\alpha}\right)+\xi^{i} \cdot u_{J, i}^{\alpha} \tag{1.1}
\end{equation*}
$$

Furthermore for all J,

$$
\begin{equation*}
\phi_{\alpha}^{J, k}=D_{k}\left(\phi_{\alpha}^{j}\right)-\left(D_{k} \xi^{i}\right) u_{J, i}^{\alpha} . \tag{1.2}
\end{equation*}
$$

Remark 1.2. Recall that $\mathrm{pr}^{(n)} V$ is a vector field on $X \times U^{(n)}$ and defined as follows. Let $\exp (\varepsilon V)=: g_{\varepsilon}$ and $\operatorname{pr}^{(n)} g_{\varepsilon}\left(x, u^{(n)}\right)=(\tilde{x}(\varepsilon), \tilde{u}(\varepsilon))$, which is a curve parametrized by ε in $X \times U^{(n)}$. Now $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{pr}^{(n)} g_{\varepsilon}\left(x, u^{(n)}\right)=\mathrm{pr}^{(n)} V\left(x, u^{(n)}\right)$.

Proof. Assume $n=1$. Let $(\tilde{x}, \tilde{u})=g_{\varepsilon}(x, u):=\left(\Xi_{\varepsilon}(x, u), \Phi_{\varepsilon}(x, u)\right.$. Then $\left.\frac{\partial \Xi}{\partial \varepsilon}\right|_{\varepsilon=0}=\xi(x, u),\left.\frac{\partial \Phi}{\partial \varepsilon}\right|_{\varepsilon=0}=\phi(x, u)$. Given $\left(x, u^{(1)}\right) \in X \times U^{(1)}$, let $f(x)$ be any function that fits this point i.e. $f^{(1)}(x)=u^{(1)}$. Then

$$
\tilde{u}=\tilde{f}_{\varepsilon}(\tilde{x}):=\left(g_{\varepsilon} \cdot f\right)(\tilde{x})=\left[\Phi_{\varepsilon} \circ(\mathbf{1} \times f)\right](x)=\left[\Phi_{\varepsilon} \circ(\mathbf{1} \times f)\right] \circ\left[\Xi_{\varepsilon} \circ(\mathbf{1} \times f)\right]^{-1}(\tilde{x}) .
$$

To get $\frac{\partial \tilde{u}^{\alpha}}{\partial \tilde{x}^{k}}$, we compute the Jacobian using the chain rule to have

$$
\left[J \tilde{f}_{\varepsilon}\right](\tilde{x})=J\left[\Phi_{\varepsilon} \circ(\mathbf{1} \times f)\right](x) \cdot J\left[\Xi_{\varepsilon} \circ(\mathbf{1} \times f)\right]^{-1}(\tilde{x})
$$

whose (α, k) entry is $\tilde{u}_{k}^{\alpha}(\varepsilon)$. Differentiate in ε and evaluate the above at $\varepsilon=0$ to find ϕ_{α}^{k}. Especially the right hand side becomes

$$
J[\phi \circ(1 \times f)](x) \cdot I+\left.J f(x) \cdot \frac{d}{d \varepsilon}\right|_{\varepsilon=0} J\left[\Xi_{\varepsilon} \circ(\mathbf{1} \times f)\right]^{-1}(\tilde{x})
$$

which is $J[\phi \circ(\mathbf{1} \times f)](x) \cdot I-J f(x) \cdot I \cdot J[\xi \circ(\mathbf{1} \times f)](x) \cdot I$ whose (α, k) entry is

$$
\frac{\partial \phi^{\alpha}}{\partial x^{k}}(x, f(x))-\frac{\partial f^{\alpha}}{\partial x^{i}} \cdot \frac{\partial \xi^{i}}{\partial x^{k}}(x, f(x))=D_{k} \phi^{\alpha}-u_{i}^{\alpha}\left(D_{k} \xi^{i}\right)
$$

That is,

$$
\phi_{\alpha}^{k}:=D_{k} \phi^{\alpha}-D_{k} \xi^{i} \cdot u_{i}^{\alpha}=D_{k}\left(\phi^{\alpha}-\xi^{i} u_{i}^{\alpha}\right)+\xi^{i} u_{i k}^{\alpha}
$$

which is (1.2) for $n=1$. We use induction. First note that $(n+1)$ st jet $X \times U^{(n+1)}$ can be viewed as a subspace of $\left(X \times U^{(n)}\right)^{(1)}$ as follows.

Example 1.3. $p=2, q=1$. Then

$$
\begin{aligned}
X \times U^{(1)} & =\left\{\left(x, y, u, u_{x}, u_{y}\right)\right\} \\
X \times U^{(2)} & =\left\{\left(x, y, u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}\right)\right\} \\
\left(X \times U^{(1)}\right)^{(1)} & =\left\{\left(x, y, u, v, w, u_{x}, u_{y}, v_{x}, v_{y}, w_{x}, w_{y}\right)\right\}
\end{aligned}
$$

[^0]with $v=u_{x}$ and $w=u_{y}$. Regard $X \times U^{(2)}$ as a subset of $\left(X \times U^{(1)}\right)^{(1)}$ defined by $u_{x}=v, u_{y}=w$ and $v_{y}=w_{x}$ etc.

We proceed on the induction on $|J|$. Note that $\mathrm{pr}^{(n-1)} V$ is a vector field on $X \times U^{(n-1)}$. For J with $|J|=n-1$

$$
\phi_{\alpha}^{J, k}=D_{k} \phi_{\alpha}^{J}-D_{k} \xi^{i} \cdot u_{J i}^{\alpha}
$$

by the 1st prolongation formula, which still holds true for J with $|J|=n$. By induction hypothesis, this is in turn equal to

$$
\begin{aligned}
& D_{k}\left[D_{j}\left(\phi_{\alpha}-\xi^{i} u_{i}^{\alpha}\right)+\xi^{i} u_{J i}^{\alpha}\right]-D_{k} \xi^{i} \cdot u_{J i}^{\alpha} \\
= & D_{k} D_{J}\left(\phi_{\alpha}-\xi^{i} u_{i}^{\alpha}\right)+D_{k} \xi^{i} \cdot u_{J i}^{\alpha}+\xi^{i} u_{J i k}^{\alpha}-D_{k} \xi^{i} \cdot u_{J i}^{\alpha}
\end{aligned}
$$

fulfilling (1.1).
Example 1.4. Let $V=-u \frac{\partial}{\partial x}+x \frac{\partial}{\partial u}$ be infinitesimal rotation on $\{(x, u)\}=\mathbb{R}^{2}$. then

$$
\begin{aligned}
& \operatorname{pr}^{(1)} V=V+\left(1+u_{x}^{2}\right) \frac{\partial}{\partial x} \\
& \operatorname{pr}^{(2)} V=\operatorname{pr}^{(1)} V+\left(3 u_{x} \cdot u_{x x}\right) \frac{\partial}{\partial u_{x x}}
\end{aligned}
$$

since $D_{x}\left(1+u_{x}^{2}\right)-\underbrace{D_{x}(-u)}_{=D_{x} \xi} \cdot u_{x x}=2 u_{x} u_{x x}+u_{x} u_{x x}$. Our differential equation is $u_{x x}=0$ whose solutions are group of straight lines. Rotation of straight lines gives also straight lines hence we know our V is an infinitesimal symmetry. To prove it, it is enough to show $\mathrm{pr}^{(2)} V u_{x x}=0$ on $u_{x x}=0$. Actually

$$
\begin{aligned}
\mathrm{pr}^{(2)} V u_{x x} & =\left(-u \frac{\partial}{\partial x}+x \frac{\partial}{\partial u}+\left(1+u_{x}^{2}\right) \frac{\partial}{\partial u_{x x}}+\left(3 u_{x} u_{x x}\right) \frac{\partial}{\partial u_{x x}}\right) u_{x x} \\
& =3 u_{x} u_{x x}
\end{aligned}
$$

which is 0 on $u_{x x}=0$.
Example 1.5. Differential Invariant. Given the graph of the function $u=$ $f(x), x \in \mathbb{R}$, its curvature $\kappa=\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}}$ is rotation invariant. We remark here that κ is a function defined on $X \times U^{(2)}$, it is not V but $\mathrm{pr}^{(2)} V$ that is supposed to act on κ. Now

$$
\operatorname{pr}^{(2)} V\left(\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}}\right)=\frac{3 u_{x} u_{x x}\left(1+u_{x}^{2}\right)^{3 / 2}-u_{x x}\left(1+u_{x}^{2}\right)^{3 / 2}\left(1+u_{x}^{2}\right)^{1 / 2} u_{x}}{\left(1+u_{x}^{2}\right)^{3}}=0 \text {. Hence } \kappa \text { is a }
$$ differential invariant of second order under rotation group.

THEOREM 1.6. Let $\Delta=\left(\Delta_{1}, \ldots, \Delta_{l}\right)$ be a system of differential equations defined on an open subset M of $\times U$. Then the set \mathfrak{g} of all infinitesimal symmetries forms a Lie algebra. If \mathfrak{g} is finite dimensional, the connected component of the symmetric group of $\Delta=0$ is a local Lie group of transformations acting on M. ${ }^{2}$

Proof. Let V, W be infinitesimal symmetries of $\Delta=0$. Suppose that $\Delta=0$ is of order n. In view of $\operatorname{pr}^{(n)}[V, W]=\left[\operatorname{pr}^{(n)} V, \operatorname{pr}^{(n)} W\right]$, we have $\mathrm{pr}^{(n)}[V, W] \Delta=$ $\left[\mathrm{pr}^{(n)} V, \mathrm{pr}^{(n)} W\right] \Delta=\operatorname{pr}^{(n)} V\left(\operatorname{pr}^{(n)} W \Delta\right)-\mathrm{pr}^{(n)} W\left(\mathrm{pr}^{(n)} V \Delta\right)$ which vanishes on \mathcal{S}_{Δ} since $\mathrm{pr}^{(n)} V, \mathrm{pr}^{(n)} W$ are tangent to \mathcal{S}_{Δ} and $\mathrm{pr}^{(n)} V \Delta$ and $\mathrm{pr}^{(n)} W \Delta$ are 0 on \mathcal{S}_{Δ}. Therefore $[V, W]$ is an infinitesimal symmetry.

[^1]
2. Characteristic of Symmetries

For $V=\xi^{i} \frac{\partial}{\partial x^{i}}+\phi_{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}}$, let $Q_{\alpha}\left(x, u^{(1)}\right):=\phi_{\alpha}-\xi^{i} u_{i}^{\alpha}, \alpha=1, \ldots, q$. The q tuple $Q\left(x, u^{(1)}\right)=\left(Q_{1}, \ldots, Q_{q}\right)$ is called characteristic of the vector field V. Then $\phi_{\alpha}^{J}=D_{J} Q_{\alpha}+\xi^{i} u_{J i}^{\alpha}$ in (1.1) and

$$
\begin{aligned}
\operatorname{pr}^{(n)} V & =\sum_{i=1}^{p} \xi^{i}(x, u) \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \sum_{|J| \leq n} \phi_{\alpha}^{J}\left(x, u^{(n)}\right) \frac{\partial}{\partial u_{J}^{\alpha}} \\
& =\sum_{i=1}^{p} \xi^{i} \frac{\partial}{\partial x^{i}}+\sum_{\alpha=1}^{q} \sum_{|J| \leq n}\left(D_{J} Q_{\alpha}+\xi^{i} u_{J i}^{\alpha}\right) \frac{\partial}{\partial u_{J}^{\alpha}} \\
& =\sum_{\alpha} \sum_{J} D_{J} Q_{\alpha} \frac{\partial}{\partial u_{J}^{\alpha}}+\sum_{i=1}^{p} \xi^{i}\left(\frac{\partial}{\partial x^{i}}+u_{J i}^{\alpha} \frac{\partial}{\partial u_{J}^{\alpha}}\right)
\end{aligned}
$$

Here we define $V_{Q}:=\sum_{\alpha=1}^{q} Q_{\alpha}\left(x, u^{(1)}\right) \frac{\partial}{\partial u^{\alpha}}$ and $\mathrm{pr}^{(n)} V_{Q}:=\sum_{\alpha=1}^{q} \sum_{|J| \leq n} D_{J} Q_{\alpha} \frac{\partial}{\partial u^{\alpha}}$. Noting $D_{i}=\frac{\partial}{\partial x^{i}}+u_{J i}^{\alpha} \frac{\partial}{\partial u_{J}^{\alpha}}$, we have

$$
\mathrm{pr}^{(n)} V=\mathrm{pr}^{(n)} V_{Q}+\sum_{i=1}^{p} \xi^{i} D_{i} .
$$

Exercise 2.1. Complete a symmetric group for your choice differential equation.

3. Symmetric group of Heat equation

Let $p=n+1, q=1$ and $u\left(x^{1}, \ldots, x^{p}, t\right)$ be a \mathcal{C}^{2} function defined on \mathbb{R}^{n+1} that solves

$$
u_{t}=k \Delta u
$$

where $\Delta=\left(\frac{\partial}{\partial x^{1}}\right)^{2}+\cdots+\left(\frac{\partial}{\partial x^{p}}\right)^{2}$. This is called the heat conduction equation. For convenience sake, we assume $k=1$ hereafter.

Physical motivation. Many physical laws are conservation laws and so is the heat equation. Let $\Omega \subset \mathbb{R}^{n}$ and $u(x, t)$ denote the temperature at $x \in \Omega$ and t. Then the vector $-\nabla_{x} u$ stands for the heat flux at (x, t). Total heat in Ω is $\int_{\Omega} u(x, t) d V(x)$, whose time derivative is the rate of heat increase in Ω. This should be caused by total heat flux into Ω across $\partial \Omega$. Hence

$$
\begin{aligned}
\frac{d}{d t} \int_{\Omega} u(x, t) d V(x) & =\int_{\partial \Omega}(-\nabla u) \cdot(-\vec{n}) d \sigma \\
& =\int_{\Omega} \operatorname{div} \nabla u d V \\
& =\int_{\Omega} \Delta u d V .
\end{aligned}
$$

Since Ω was arbitrary, we deduce $u_{t}=\Delta u$.
3.1. Symmetric group of 1 dimensional heat equation. Let $u(x, y)$ be defined on $(x, t) \in \mathbb{R}^{2}$ that solves $u_{t}=u_{x x}$. We look for infinitesimal symmetry in the form $V=\xi(x, t, u) \frac{\partial}{\partial x}+\tau(x, t, u) \frac{\partial}{\partial t}+\phi(x, t, u) \frac{\partial}{\partial u}$. Let $\Delta\left(x, t, u, u_{t}, u_{x}, u_{x x}, u_{x t}, u_{t t}\right):=$ $u_{x x}-u_{t}$. Then

$$
\left(\mathrm{pr}^{(2)} V\right) \Delta=0 \text { on } \Delta=0
$$

is the equation to give the symmetry. Let $\mathrm{pr}^{(2)} V=V+\phi^{x} \frac{\partial}{\partial u_{x}}+\phi^{t} \frac{\partial}{\partial u_{t}}+\phi^{x x} \frac{\partial}{\partial u_{x x}}+$ $\phi^{x t} \frac{\partial}{\partial u_{x t}}+\phi^{t t} \frac{\partial}{\partial u_{t t}}$.

[^0]: ${ }^{1}$ We follow Einstein summation convention over repeated indices.

[^1]: ${ }^{2}$ We only consider the Lie group of finite dimension.

