Lecture 09

1. Prolongation formula for general vector fields

Prolongation formula. Let x € (z!,...,2P) and u = (u',...,u9) and a vector
field V = ¢° 321- + ¢alz, u)%.1 Then we have the following prolongation formula.

THEOREM 1.1. For the vector field above,

priV =V + qu > o, ul™) -

a=1|J]<n Ouj
where
(1.1) @2 =Dy(pa — & - uf) + & U,
Furthermore for all J,
(1.2) 62" = Di(9n) — (Dk€")us.

REMARK 1.2. Recall that pri™V is a vector field on X x U™ and defined as
follows. Let exp(eV) =: g. and pri™g.(z,u™) = (#(¢), u(e)), which is a curve
parametrized by € in X x U™ . Now %L:o prge (z,u™) = prMV (z, u(™).

PrOOF. Assume n = 1. Let (Z,4) = ge(z,u) = (Ec(z,u), Pc(x,u). Then
%—ELZO = &(z,u), %—? o = ¢(z,u). Given (z,uM) € X x UM, let f(x) be any
function that fits this point i.e. f(!)(x) = u). Then

U= fo(&) = (g:- /)@ = [0 (1 x f)](@) = [P0 (1 x f)] o [Ec 0 (1 x )] ().
To get %, we compute the Jacobian using the chain rule to have
[Jf)(@) = J[@c 0 (1 x f](z) - J[Ec o (1 x )]} (&)

whose (o, k) entry is 4§ (¢). Differentiate in € and evaluate the above at ¢ = 0 to
find ¢*. Especially the right hand side becomes

Too (L @)1+ 5() 7| J1Z0 (1x 7@
which is J[po (1 x f)](z) - T = Jf(z)-I-JEo (1 x f)](z)- I whose (a, k) entry is

0p” afe  ag ,
00w @)~ O o @) = Deo — (D)

That is,
O = D™ — D€' uit = Di(6% — &) + €'ufy
which is (1.2) for n = 1. We use induction. First note that (n+1)st jet X x U™+
can be viewed as a subspace of (X x U™)1) as follows.
ExampPLE 1.3. p=2, g =1. Then
X xUW = {(z,y,u,uz,uy)}
X xU® = (2,9, ty U, Uy U, Uy Uyy)
(X x UMDYD = {2, 4, u, v, W0, Uy, Uy, U, Uy, W, W)

WWWe follow Einstein summation convention over repeated indices.
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with v = u, and w = u,. Regard X x U?) as a subset of (X x UM)() defined by
Uy =V, Uy = w and vy = w, etc.

We proceed on the induction on |J|. Note that pr(®»~YV is a vector field on
X x UMY, For J with |J| =n — 1

92" = Dido = Dit' - uf;

by the 1lst prolongation formula, which still holds true for J with |J| = n. By
induction hypothesis, this is in turn equal to

Dy[Dj(¢a — E'ui) + E'ufy) — Dpé" - uf;
= DpDj(¢a — §'uf) + Dyt - uf; + EuGy, — Dr&' - uf;
fulfilling (1.1).
EXAMPLE 1.4. Let V = —u2 + -2 be infinitesimal rotation on {(z,u)} = R2.
then
prV =V + (1+ ui)%7

B o)
prPV = prMV + (3u,, - Una) s

since Dy (1 4+ u2) — Dy(—u) Upy = 2Uglpy + Ugly,. Our differential equation is
——
=D&
Uz = 0 whose solutions are group of straight lines. Rotation of straight lines gives
also straight lines hence we know our V is an infinitesimal symmetry. To prove it,

it is enough to show pr®Vu,, =0 on u,, = 0. Actually

0 0 0 0
(2) — P il 2\ _ Y .
pr'¥ Vg, < u@a: + xau +(1+ u“")aum + (3umum)8um> Upy

= 3Uzlzy

which is 0 on ug,, = 0.

ExaMPLE 1.5. Differential Invariant. Given the graph of the function u =
f(z), x € R, its curvature k = (H';% is rotation invariant. We remark here that

K is a function defined on X x U@ it is not V but pr®V that is supposed to act

on k. Now 2 ao R i
3UgUga (1 —Ugzap (1 1 z .
pri®V ((1+7:irzsz/z) e (71+152)+3um) (ue) e — (), Hence & is a
z x

differential invariant of second order under rotation group.

THEOREM 1.6. Let A = (Aq,...,4;) be a system of differential equations de-
fined on an open subset M of xU. Then the set g of all infinitesimal symmetries
forms a Lie algebra. If g is finite dimensional, the connected component of the
symmetric group of A =0 is a local Lie group of transformations acting on M. 2

PrROOF. Let V, W be infinitesimal symmetries of A = 0. Suppose that A =0
is of order n. In view of pr™ [V, W] = [pr™V, pr W], we have pr™[V, W]A =
[pr™V, prWIA = pr™V (prWA) — pri™ W (pr(™V A) which vanishes on Sa
since prV, pr™ W are tangent to Sa and pr™ VA and pr™ WA are 0 on Sa.
Therefore [V, W] is an infinitesimal symmetry.

2We only consider the Lie group of finite dimension.
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2. Characteristic of Symmetries

For V = Ezaml—l-(i)a(x u)auu,let Qolz,uM) = ¢y —Eu®, a=1,...,q. Theq
tuple Q(z,uM) = (Q1, . . ., Q) is called characteristic of the vector ﬁeld V. Then
¢! = D;Qu + €, in (1.1) and

prMy = gﬁi(x,u +Z Z o (x, u(” (“)3,

a=1|J|<n
P
= Z axZ + Z Z DJQOz glu?z)
a=1]J|<n
) DT g 6A+u?-i
ug Ox* " Oug
a J i=1 :
Here we define Vg := Y1, Qa(, uM)) 3% and prmVg := 371, 2 o1i<n DjQagoa-

Noting D; = % + uf}w%, we have
J

P
prMV = prM v, + ZéiDi.
i=1
EXERCISE 2.1. Complete a symmetric group for your choice differential equa-
tion.

3. Symmetric group of Heat equation

Let p=n+1,q=1and u(z!,...,27,t) be a C? function defined on R"*! that
solves
uy = kAu

where A = (%)2 +t ( 0 )2. This is called the heat conduction equation. For

oxP
convenience sake, we assume k = 1 hereafter.

Physical motivation. Many physical laws are conservation laws and so is the heat
equation. Let Q C R™ and u(z,t) denote the temperature at 2 € Q and t Then the
vector —V u stands for the heat flux at (x,t). Total heat in Q is [, u(x,t)dV (x),
whose time derivative is the rate of heat increase in 2. This should be caused by
total heat flux into Q across 0f). Hence

%/ﬂu(w,t)dV(w) = /BQ(—VU)-(—ﬁ)dO’
= /QdiVVudV

= / AudV.
Q

Since 2 was arbitrary, we deduce u; = Aw.

3.1. Symmetric group of 1 dimensional heat equation. Let u(z,y) be
defined on (z,t) € R? that solves u; = u,. We look for infinitesimal symmetry in
the form V = &(z, ¢, U)a%-I-T(.’E,t, u)%—i—(i)(m, t, u)a%. Let A(z,t,u, Ug, Uy, Ugay Ut Ugt) =
Ugpy — Ue. Then
(prPV)A=00on A=0
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o)
is the equation to give the symmetry. Let pr®V =V + quﬁ + ¢ta%t + " Fuo T
¢zt 9 4 (btt 9

OUgt Ougy *




