Lecture 09

1. Prolongation formula for general vector fields

Prolongation formula. Let $x \in (x^1, \ldots, x^p)$ and $u = (u^1, \ldots, u^q)$ and a vector field $V = \xi^i \frac{\partial}{\partial x^i} + \phi_{\alpha}(x, u) \frac{\partial}{\partial u^{\alpha}}$.¹ Then we have the following prolongation formula.

THEOREM 1.1. For the vector field above,

$$\mathsf{pr}^{(n)}V = V + \sum_{\alpha=1}^{q} \sum_{|J| \le n} \phi_{\alpha}^{J}(x, u^{(n)}) \frac{\partial}{\partial u_{J}^{\alpha}}$$

where

(1.1)
$$\phi_{\alpha}^{J} = D_{J}(\phi_{\alpha} - \xi^{i} \cdot u_{i}^{\alpha}) + \xi^{i} \cdot u_{J,i}^{\alpha}$$

Furthermore for all J,

(1.2)
$$\phi_{\alpha}^{J,k} = D_k(\phi_{\alpha}^j) - (D_k\xi^i)u_{J,i}^{\alpha}$$

REMARK 1.2. Recall that $pr^{(n)}V$ is a vector field on $X \times U^{(n)}$ and defined as

follows. Let $\exp(\varepsilon V) =: g_{\varepsilon}$ and $\operatorname{pr}^{(n)}g_{\varepsilon}(x, u^{(n)}) = (\tilde{x}(\varepsilon), \tilde{u}(\varepsilon))$, which is a curve parametrized by ε in $X \times U^{(n)}$. Now $\frac{d}{d\varepsilon}|_{\varepsilon=0} \operatorname{pr}^{(n)}g_{\varepsilon}(x, u^{(n)}) = \operatorname{pr}^{(n)}V(x, u^{(n)})$. PROOF. Assume n = 1. Let $(\tilde{x}, \tilde{u}) = g_{\varepsilon}(x, u) := (\Xi_{\varepsilon}(x, u), \Phi_{\varepsilon}(x, u))$. Then $\frac{\partial \Xi}{\partial \varepsilon}|_{\varepsilon=0} = \xi(x, u), \ \frac{\partial \Phi}{\partial \varepsilon}|_{\varepsilon=0} = \phi(x, u)$. Given $(x, u^{(1)}) \in X \times U^{(1)}$, let f(x) be any function that fits this point i.e. $f^{(1)}(x) = u^{(1)}$. Then

$$\tilde{u} = \tilde{f}_{\varepsilon}(\tilde{x}) := (g_{\varepsilon} \cdot f)(\tilde{x}) = [\Phi_{\varepsilon} \circ (\mathbf{1} \times f)](x) = [\Phi_{\varepsilon} \circ (\mathbf{1} \times f)] \circ [\Xi_{\varepsilon} \circ (\mathbf{1} \times f)]^{-1}(\tilde{x}).$$

To get $\frac{\partial u^{-}}{\partial \tilde{x}^{k}}$, we compute the Jacobian using the chain rule to have

$$[J\tilde{f}_{\varepsilon}](\tilde{x}) = J[\Phi_{\varepsilon} \circ (\mathbf{1} \times f)](x) \cdot J[\Xi_{\varepsilon} \circ (\mathbf{1} \times f)]^{-1}(\tilde{x})$$

whose (α, k) entry is $\tilde{u}_k^{\alpha}(\varepsilon)$. Differentiate in ε and evaluate the above at $\varepsilon = 0$ to find ϕ_{α}^{k} . Especially the right hand side becomes

$$J[\phi \circ (1 \times f)](x) \cdot I + Jf(x) \cdot \left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} J[\Xi_{\varepsilon} \circ (\mathbf{1} \times f)]^{-1}(\tilde{x})$$

which is $J[\phi \circ (\mathbf{1} \times f)](x) \cdot I - Jf(x) \cdot I \cdot J[\xi \circ (\mathbf{1} \times f)](x) \cdot I$ whose (α, k) entry is

$$\frac{\partial \phi^{\alpha}}{\partial x^{k}}(x, f(x)) - \frac{\partial f^{\alpha}}{\partial x^{i}} \cdot \frac{\partial \xi^{i}}{\partial x^{k}}(x, f(x)) = D_{k}\phi^{\alpha} - u_{i}^{\alpha}(D_{k}\xi^{i}).$$

That is,

$$\phi_{\alpha}^{k} := D_{k}\phi^{\alpha} - D_{k}\xi^{i} \cdot u_{i}^{\alpha} = D_{k}(\phi^{\alpha} - \xi^{i}u_{i}^{\alpha}) + \xi^{i}u_{ik}^{\alpha}$$

which is (1.2) for n = 1. We use induction. First note that (n+1)st jet $X \times U^{(n+1)}$ can be viewed as a subspace of $(X \times U^{(n)})^{(1)}$ as follows.

EXAMPLE 1.3. p = 2, q = 1. Then

$$\begin{array}{ll} X \times U^{(1)} &= \{(x, y, u, u_x, u_y)\} \\ X \times U^{(2)} &= \{(x, y, u, u_x, u_y, u_{xx}, u_{xy}, u_{yy})\} \\ (X \times U^{(1)})^{(1)} &= \{(x, y, u, v, w, u_x, u_y, v_x, v_y, w_x, w_y)\} \end{array}$$

 $^{^1\}mathrm{We}$ follow Einstein summation convention over repeated indices.

with $v = u_x$ and $w = u_y$. Regard $X \times U^{(2)}$ as a subset of $(X \times U^{(1)})^{(1)}$ defined by $u_x = v$, $u_y = w$ and $v_y = w_x$ etc.

We proceed on the induction on |J|. Note that $pr^{(n-1)}V$ is a vector field on $X \times U^{(n-1)}$. For J with |J| = n - 1

$$\phi_{\alpha}^{J,k} = D_k \phi_{\alpha}^J - D_k \xi^i \cdot u_{Ji}^{\alpha}$$

by the 1st prolongation formula, which still holds true for J with |J| = n. By induction hypothesis, this is in turn equal to

$$D_k[D_j(\phi_\alpha - \xi^i u_i^\alpha) + \xi^i u_{Ji}^\alpha] - D_k \xi^i \cdot u_{Ji}^\alpha$$

= $D_k D_J(\phi_\alpha - \xi^i u_i^\alpha) + D_k \xi^i \cdot u_{Ji}^\alpha + \xi^i u_{Jik}^\alpha - D_k \xi^i \cdot u_{Ji}^\alpha$

fulfilling (1.1).

EXAMPLE 1.4. Let $V = -u\frac{\partial}{\partial x} + x\frac{\partial}{\partial u}$ be infinitesimal rotation on $\{(x, u)\} = \mathbb{R}^2$. then

$$\begin{split} & \mathsf{pr}^{(1)}V = V + (1+u_x^2)\frac{\partial}{\partial x}, \\ & \mathsf{pr}^{(2)}V = \mathsf{pr}^{(1)}V + (3u_x \cdot u_{xx})\frac{\partial}{\partial u_{xx}} \end{split}$$

since $D_x(1+u_x^2) - \underbrace{D_x(-u)}_{=D_x\xi} \cdot u_{xx} = 2u_x u_{xx} + u_x u_{xx}$. Our differential equation is

 $u_{xx} = 0$ whose solutions are group of straight lines. Rotation of straight lines gives also straight lines hence we know our V is an infinitesimal symmetry. To prove it, it is enough to show $pr^{(2)}Vu_{xx} = 0$ on $u_{xx} = 0$. Actually

$$\mathsf{pr}^{(2)} V u_{xx} = \left(-u \frac{\partial}{\partial x} + x \frac{\partial}{\partial u} + (1 + u_x^2) \frac{\partial}{\partial u_{xx}} + (3u_x u_{xx}) \frac{\partial}{\partial u_{xx}} \right) u_{xx}$$

= $3u_x u_{xx}$

which is 0 on $u_{xx} = 0$.

EXAMPLE 1.5. Differential Invariant. Given the graph of the function $u = f(x), x \in \mathbb{R}$, its curvature $\kappa = \frac{u_{xx}}{(1+u_x^2)^{3/2}}$ is rotation invariant. We remark here that κ is a function defined on $X \times U^{(2)}$, it is not V but $\operatorname{pr}^{(2)}V$ that is supposed to act on κ . Now

on κ . Now $\Pr^{(2)}V\left(\frac{u_{xx}}{(1+u_x^2)^{3/2}}\right) = \frac{3u_x u_{xx}(1+u_x^2)^{3/2}-u_{xx}(1+u_x^2)^{3/2}(1+u_x^2)^{1/2}u_x}{(1+u_x^2)^3} = 0$. Hence κ is a differential invariant of second order under rotation group.

THEOREM 1.6. Let $\Delta = (\Delta_1, \ldots, \Delta_l)$ be a system of differential equations defined on an open subset M of $\times U$. Then the set \mathfrak{g} of all infinitesimal symmetries forms a Lie algebra. If \mathfrak{g} is finite dimensional, the connected component of the symmetric group of $\Delta = 0$ is a local Lie group of transformations acting on M.²

PROOF. Let V, W be infinitesimal symmetries of $\Delta = 0$. Suppose that $\Delta = 0$ is of order n. In view of $\operatorname{pr}^{(n)}[V,W] = [\operatorname{pr}^{(n)}V,\operatorname{pr}^{(n)}W]$, we have $\operatorname{pr}^{(n)}[V,W]\Delta = [\operatorname{pr}^{(n)}V,\operatorname{pr}^{(n)}W]\Delta = \operatorname{pr}^{(n)}V(\operatorname{pr}^{(n)}W\Delta) - \operatorname{pr}^{(n)}W(\operatorname{pr}^{(n)}V\Delta)$ which vanishes on \mathcal{S}_{Δ} since $\operatorname{pr}^{(n)}V$, $\operatorname{pr}^{(n)}W$ are tangent to \mathcal{S}_{Δ} and $\operatorname{pr}^{(n)}V\Delta$ and $\operatorname{pr}^{(n)}W\Delta$ are 0 on \mathcal{S}_{Δ} . Therefore [V,W] is an infinitesimal symmetry.

 $^{^{2}}$ We only consider the Lie group of finite dimension.

2. Characteristic of Symmetries

For $V = \xi^i \frac{\partial}{\partial x^i} + \phi_\alpha(x, u) \frac{\partial}{\partial u^\alpha}$, let $Q_\alpha(x, u^{(1)}) := \phi_\alpha - \xi^i u_i^\alpha$, $\alpha = 1, \ldots, q$. The q tuple $Q(x, u^{(1)}) = (Q_1, \ldots, Q_q)$ is called *characteristic* of the vector field V. Then $\phi_\alpha^J = D_J Q_\alpha + \xi^i u_{J_i}^\alpha$ in (1.1) and

$$pr^{(n)}V = \sum_{i=1}^{p} \xi^{i}(x,u) \frac{\partial}{\partial x^{i}} + \sum_{\alpha=1}^{q} \sum_{|J| \le n} \phi^{J}_{\alpha}(x,u^{(n)}) \frac{\partial}{\partial u^{\alpha}_{J}}$$
$$= \sum_{i=1}^{p} \xi^{i} \frac{\partial}{\partial x^{i}} + \sum_{\alpha=1}^{q} \sum_{|J| \le n} (D_{J}Q_{\alpha} + \xi^{i}u^{\alpha}_{Ji}) \frac{\partial}{\partial u^{\alpha}_{J}}$$
$$= \sum_{\alpha} \sum_{J} D_{J}Q_{\alpha} \frac{\partial}{\partial u^{\alpha}_{J}} + \sum_{i=1}^{p} \xi^{i} \left(\frac{\partial}{\partial x^{i}} + u^{\alpha}_{Ji} \frac{\partial}{\partial u^{\alpha}_{J}}\right)$$

Here we define $V_Q := \sum_{\alpha=1}^q Q_\alpha(x, u^{(1)}) \frac{\partial}{\partial u^\alpha}$ and $\operatorname{pr}^{(n)} V_Q := \sum_{\alpha=1}^q \sum_{|J| \leq n} D_J Q_\alpha \frac{\partial}{\partial u^\alpha}$. Noting $D_i = \frac{\partial}{\partial x^i} + u_{Ji}^\alpha \frac{\partial}{\partial u_j^\alpha}$, we have

$$\mathsf{pr}^{(n)}V = \mathsf{pr}^{(n)}V_Q + \sum_{i=1}^p \xi^i D_i.$$

EXERCISE 2.1. Complete a symmetric group for your choice differential equation.

3. Symmetric group of Heat equation

Let p = n+1, q = 1 and $u(x^1, \dots, x^p, t)$ be a \mathcal{C}^2 function defined on \mathbb{R}^{n+1} that solves

$$u_t = k\Delta \iota$$

where $\Delta = \left(\frac{\partial}{\partial x^1}\right)^2 + \dots + \left(\frac{\partial}{\partial x^p}\right)^2$. This is called the heat conduction equation. For convenience sake, we assume k = 1 hereafter.

Physical motivation. Many physical laws are conservation laws and so is the heat equation. Let $\Omega \subset \mathbb{R}^n$ and u(x,t) denote the temperature at $x \in \Omega$ and t. Then the vector $-\nabla_x u$ stands for the heat flux at (x,t). Total heat in Ω is $\int_{\Omega} u(x,t)dV(x)$, whose time derivative is the rate of heat increase in Ω . This should be caused by total heat flux into Ω across $\partial\Omega$. Hence

$$\frac{d}{dt} \int_{\Omega} u(x,t) dV(x) = \int_{\partial \Omega} (-\nabla u) \cdot (-\vec{n}) d\sigma$$
$$= \int_{\Omega} \operatorname{div} \nabla u dV$$
$$= \int_{\Omega} \Delta u dV.$$

Since Ω was arbitrary, we deduce $u_t = \Delta u$.

3.1. Symmetric group of 1 dimensional heat equation. Let u(x, y) be defined on $(x,t) \in \mathbb{R}^2$ that solves $u_t = u_{xx}$. We look for infinitesimal symmetry in the form $V = \xi(x,t,u) \frac{\partial}{\partial x} + \tau(x,t,u) \frac{\partial}{\partial t} + \phi(x,t,u) \frac{\partial}{\partial u}$. Let $\Delta(x,t,u,u_t,u_x,u_{xx},u_{xt},u_{tt}) := u_{xx} - u_t$. Then

$$(\mathsf{pr}^{(2)}V)\Delta = 0 \text{ on } \Delta = 0$$

is the equation to give the symmetry. Let $\operatorname{pr}^{(2)}V = V + \phi^x \frac{\partial}{\partial u_x} + \phi^t \frac{\partial}{\partial u_t} + \phi^{xx} \frac{\partial}{\partial u_{xx}} + \phi^{xt} \frac{\partial}{\partial u_{xt}} + \phi^{tt} \frac{\partial}{\partial u_{tt}}$.

4