
Lecture 09

1. Prolongation formula for general vector fields

Prolongation formula. Let x ∈ (x1, . . . , xp) and u = (u1, . . . , uq) and a vector
field V = ξi ∂

∂xi + φα(x, u) ∂
∂uα .1 Then we have the following prolongation formula.

Theorem 1.1. For the vector field above,

pr(n)V = V +
q∑

α=1

∑
|J|≤n

φJ
α(x, u(n))

∂

∂uα
J

where

(1.1) φJ
α = DJ(φα − ξi · uα

i ) + ξi · uα
J,i

Furthermore for all J ,

(1.2) φJ,k
α = Dk(φj

α)− (Dkξi)uα
J,i.

Remark 1.2. Recall that pr(n)V is a vector field on X × U (n) and defined as
follows. Let exp(εV ) =: gε and pr(n)gε(x, u(n)) = (x̃(ε), ũ(ε)), which is a curve
parametrized by ε in X × U (n). Now d

dε

∣∣
ε=0

pr(n)gε(x, u(n)) = pr(n)V (x, u(n)).
Proof. Assume n = 1. Let (x̃, ũ) = gε(x, u) := (Ξε(x, u),Φε(x, u). Then

∂ Ξ
∂ε

∣∣
ε=0

= ξ(x, u), ∂ Φ
∂ε

∣∣
ε=0

= φ(x, u). Given (x, u(1)) ∈ X × U (1), let f(x) be any
function that fits this point i.e. f (1)(x) = u(1). Then

ũ = f̃ε(x̃) := (gε · f)(x̃) = [Φε ◦ (1× f)](x) = [Φε ◦ (1× f)] ◦ [ Ξε ◦ (1× f)]−1(x̃).

To get ∂ũα

∂x̃k , we compute the Jacobian using the chain rule to have

[Jf̃ε](x̃) = J [Φε ◦ (1× f)](x) · J [Ξε ◦ (1× f)]−1(x̃)

whose (α, k) entry is ũα
k (ε). Differentiate in ε and evaluate the above at ε = 0 to

find φk
α. Especially the right hand side becomes

J [φ ◦ (1× f)](x) · I + Jf(x) · d

dε

∣∣∣∣
ε=0

J [ Ξε ◦ (1× f)]−1(x̃)

which is J [φ ◦ (1× f)](x) · I − Jf(x) · I · J [ξ ◦ (1× f)](x) · I whose (α, k) entry is

∂φα

∂xk
(x, f(x))− ∂fα

∂xi
· ∂ξi

∂xk
(x, f(x)) = Dkφα − uα

i (Dkξi).

That is,
φk

α := Dkφα −Dkξi · uα
i = Dk(φα − ξiuα

i ) + ξiuα
ik

which is (1.2) for n = 1. We use induction. First note that (n+1)st jet X×U (n+1)

can be viewed as a subspace of (X × U (n))(1) as follows.
Example 1.3. p = 2, q = 1. Then

X × U (1) = {(x, y, u, ux, uy)}
X × U (2) = {(x, y, u, ux, uy, uxx, uxy, uyy)}

(X × U (1))(1) = {(x, y, u, v, w, ux, uy, vx, vy, wx, wy)}

1We follow Einstein summation convention over repeated indices.
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with v = ux and w = uy. Regard X × U (2) as a subset of (X × U (1))(1) defined by
ux = v, uy = w and vy = wx etc.

We proceed on the induction on |J |. Note that pr(n−1)V is a vector field on
X × U (n−1). For J with |J | = n− 1

φJ,k
α = DkφJ

α −Dkξi · uα
Ji

by the 1st prolongation formula, which still holds true for J with |J | = n. By
induction hypothesis, this is in turn equal to

Dk[Dj(φα − ξiuα
i ) + ξiuα

Ji]−Dkξi · uα
Ji

= DkDJ(φα − ξiuα
i ) + Dkξi · uα

Ji + ξiuα
Jik −Dkξi · uα

Ji

fulfilling (1.1).

Example 1.4. Let V = −u ∂
∂x +x ∂

∂u be infinitesimal rotation on {(x, u)} = R2.
then

pr(1)V = V + (1 + u2
x) ∂

∂x ,
pr(2)V = pr(1)V + (3ux · uxx) ∂

∂uxx

since Dx(1 + u2
x) − Dx(−u)︸ ︷︷ ︸

=Dxξ

·uxx = 2uxuxx + uxuxx. Our differential equation is

uxx = 0 whose solutions are group of straight lines. Rotation of straight lines gives
also straight lines hence we know our V is an infinitesimal symmetry. To prove it,
it is enough to show pr(2)V uxx = 0 on uxx = 0. Actually

pr(2)V uxx =
(
−u

∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂uxx
+ (3uxuxx)

∂

∂uxx

)
uxx

= 3uxuxx

which is 0 on uxx = 0.

Example 1.5. Differential Invariant. Given the graph of the function u =
f(x), x ∈ R, its curvature κ = uxx

(1+u2
x)3/2 is rotation invariant. We remark here that

κ is a function defined on X × U (2), it is not V but pr(2)V that is supposed to act
on κ. Now

pr(2)V
(

uxx

(1+u2
x)3/2

)
= 3uxuxx(1+u2

x)3/2−uxx(1+u2
x)3/2(1+u2

x)1/2ux

(1+u2
x)3 = 0. Hence κ is a

differential invariant of second order under rotation group.

Theorem 1.6. Let ∆ = (∆1, . . . ,∆l) be a system of differential equations de-
fined on an open subset M of ×U . Then the set g of all infinitesimal symmetries
forms a Lie algebra. If g is finite dimensional, the connected component of the
symmetric group of ∆ = 0 is a local Lie group of transformations acting on M . 2

Proof. Let V , W be infinitesimal symmetries of ∆ = 0. Suppose that ∆ = 0
is of order n. In view of pr(n)[V,W ] = [pr(n)V, pr(n)W ], we have pr(n)[V,W ]∆ =
[pr(n)V, pr(n)W ]∆ = pr(n)V (pr(n)W∆) − pr(n)W (pr(n)V ∆) which vanishes on S∆

since pr(n)V , pr(n)W are tangent to S∆ and pr(n)V ∆ and pr(n)W∆ are 0 on S∆.
Therefore [V,W ] is an infinitesimal symmetry.

2We only consider the Lie group of finite dimension.
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2. Characteristic of Symmetries

For V = ξi ∂
∂xi + φα(x, u) ∂

∂uα , let Qα(x, u(1)) := φα − ξiuα
i , α = 1, . . . , q. The q

tuple Q(x, u(1)) = (Q1, . . . , Qq) is called characteristic of the vector field V . Then
φJ

α = DJQα + ξiuα
Ji in (1.1) and

pr(n)V =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

∑
|J|≤n

φJ
α(x, u(n))

∂

∂uα
J

=
p∑

i=1

ξi ∂

∂xi
+

q∑
α=1

∑
|J|≤n

(DJQα + ξiuα
Ji)

∂

∂uα
J

=
∑
α

∑
J

DJQα
∂

∂uα
J

+
p∑

i=1

ξi

(
∂

∂xi
+ uα

Ji

∂

∂uα
J

)
Here we define VQ :=

∑q
α=1 Qα(x, u(1)) ∂

∂uα and pr(n)VQ :=
∑q

α=1

∑
|J|≤n DJQα

∂
∂uα .

Noting Di = ∂
∂xi + uα

Ji
∂

∂uα
J
, we have

pr(n)V = pr(n)VQ +
p∑

i=1

ξiDi.

Exercise 2.1. Complete a symmetric group for your choice differential equa-
tion.

3. Symmetric group of Heat equation

Let p = n+1, q = 1 and u(x1, . . . , xp, t) be a C2 function defined on Rn+1 that
solves

ut = k∆u

where ∆ =
(

∂
∂x1

)2
+ · · ·+

(
∂

∂xp

)2
. This is called the heat conduction equation. For

convenience sake, we assume k = 1 hereafter.

Physical motivation. Many physical laws are conservation laws and so is the heat
equation. Let Ω ⊂ Rn and u(x, t) denote the temperature at x ∈ Ω and t. Then the
vector −∇xu stands for the heat flux at (x, t). Total heat in Ω is

∫
Ω

u(x, t)dV (x),
whose time derivative is the rate of heat increase in Ω. This should be caused by
total heat flux into Ω across ∂Ω. Hence

d

dt

∫
Ω

u(x, t)dV (x) =
∫

∂Ω

(−∇u) · (−~n)dσ

=
∫

Ω

div∇udV

=
∫

Ω

∆udV.

Since Ω was arbitrary, we deduce ut = ∆u.

3.1. Symmetric group of 1 dimensional heat equation. Let u(x, y) be
defined on (x, t) ∈ R2 that solves ut = uxx. We look for infinitesimal symmetry in
the form V = ξ(x, t, u) ∂

∂x+τ(x, t, u) ∂
∂t+φ(x, t, u) ∂

∂u . Let ∆(x, t, u, ut, ux, uxx, uxt, utt) :=
uxx − ut. Then

(pr(2)V )∆ = 0 on ∆ = 0
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is the equation to give the symmetry. Let pr(2)V = V +φx ∂
∂ux

+φt ∂
∂ut

+φxx ∂
∂uxx

+
φxt ∂

∂uxt
+ φtt ∂

∂utt
.


